English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Verify the existence of limx→1f(x), where ,for,forf(x)={|x-1|x-1, for x≠10, for x=1 - Mathematics

Advertisements
Advertisements

Question

Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`

Sum

Solution

Given `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`

`f(x) = {{:(|(x - 1|)/(x - 1),  "for"  x < 1 and x > 1),(0,  "for"  x = 1):}`

`f(x) = {{:((- (x - 1))/(x - 1),  "for"  x < 1),((x - 1)/(x - 1),  "for"  x > 1),(0,  "for"  x = 1):}`

`f(x) = {{:(-1,  "for"  x < 1),(1,  "for"  x > 1),(0,  "for"  x = 1):}`

`f(1^-) = lim_(x -> 1^-) f(x)`

= `lim_(x -> 1^-) (- 1)` = – 1   .......(1)

`f(1^+) = lim_(x -> 1^+) f(x)`

= `lim_(x -> 1^+) (1)` = 1   .......(2)

From equations (1) and (2) we get

f(1) ≠ f(1+)

∴ The limit of f(x) does not exist.

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [Page 98]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 23 | Page 98

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/("n"("n" + 1))` = 1


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×