English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→03x-1x+1-1 - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`

Sum

Solution

We know `lim_(x -> 0) ("a"^x - 1)/x = log "a", "a" > 0`

`lim_(x -> 0) ((3^x- 1)/(sqrt(x + 1) - 1)) =  lim_(x -> 0) ((3^x - 1)/(sqrt(x + 1) - 1)) xx (sqrt(x + 1) + 1)/(sqrt(x + 1) + 1)`

= `lim_(x -> 0) ((3^x - 1) (sqrt(x + 1) + 1))/(x + 1 - 1)`

= `lim_(x -> 0) ((3^x - 1) (sqrt(x + 1) + 1))/x`

= `lim_(x -> 0) ((3^x - 1)/x) xx lim_(x -> 0) (sqrt(x + 1) + 1)`

= `log 3 xx (sqrt(0 + 1) + 1)`

= `log 3 xx (1 + 1)`

 = 2 log 3

= log 32

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1) = log 9`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [Page 118]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 16 | Page 118

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×