English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Evaluate the following limits: limx→1x-x21-x - Mathematics

Advertisements
Advertisements

Question

Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`

Sum

Solution

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x)) =  lim_(x -> 1) (sqrt(x) - (sqrt(x)^4))/(1 - sqrt(x)`

= `lim_(x -> 1) (sqrt(x) (1 - (sqrt(x))^3))/(1 - sqrt(x))`

= `lim_(x -> 1) sqrt(x) (((sqrt(x))^3 - 1))/(sqrt(x) - 1)`

Put y = `sqrt(x)`

Where x → 1

We have y → `sqrt(1)` = 1

 `lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x)) =  lim_(y -> 1) ((y^3 - 1))/(y - 1)`

= `(lim_(y -> 1) y) (lim_(y -> 1) (y^3 - 1^3)/(y - 1))`

= `1 xx 3(1)^(3 - 1)`

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))` = 3

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [Page 103]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 7 | Page 103

RELATED QUESTIONS

Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) sin pi x`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×