Advertisements
Advertisements
Question
Evaluate the following limits:
`lim_(x -> 0) (tan 2x)/(sin 5x)`
Solution
We know `lim_(x -> 0) (sin x)/x` = 1
`lim_(x -> 0) (tan 2x)/(sin 5x) = lim_(x -> 0) (sin 2x)/(cos 2x) xx 1/(sin 5x)`
= `lim_(x -> 0) (sin 2x)/(1/2 (2x)) xx 1/(cos 2x) xx (1/5(5x))/(sin 5x)`
= `2/5 (lim_(2x-> 0) (sin 2x)/(2x)) (lim_(x -> 0) 1/(cos 2x)) xx (1/(lim_(5x -> 0) (sin 5x)/(5x)))`
= `2/5 xx 1 xx 1/cos 0 xx 1/1`
`lim_(x -> 0) (tan 2x)/(sin 5x) = 2/5 xx 1/1 xx 1`
= `2/5`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit :
`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`
Evaluate the following :
`lim_(x -> 0)[x/(|x| + x^2)]`
In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`
x | – 3.1 | – 3.01 | – 3.00 | – 2.999 | – 2.99 | – 2.9 |
f(x) | – 0.24845 | – 0.24984 | – 0.24998 | – 0.25001 | – 0.25015 | – 0.25158 |
In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?
`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`
Evaluate the following limits:
`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`
Evaluate the following limits:
`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`
Evaluate the following limits:
`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`
Evaluate the following limits:
`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`
Evaluate the following limits:
`lim_(x -> oo)(1 + 1/x)^(7x)`
Evaluate the following limits:
`lim_(x -> 0)(1 + x)^(1/(3x))`
Evaluate the following limits:
`lim_(x -> oo) (1 + 3/x)^(x + 2)`
Evaluate the following limits:
`lim_(x -> 0) (2^x - 3^x)/x`
Choose the correct alternative:
`lim_(x -> 0) sqrt(1 - cos 2x)/x`
Choose the correct alternative:
If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to
Choose the correct alternative:
If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is
`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.