मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: eelimx→0ex-e-xsinx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) ("e"^x - "e"^(-x))/sinx`

बेरीज

उत्तर

We know `lim_(x -> 0) ("e"^x - 1)/x` = 1

`lim_(x -> 0) sinx/x` = 1

`lim_(x -> 0) ("e"^x - "e"^(-x))/sinx =  lim_(x -> 0) ("e"^x - 1/"e"^x)/sinx`

= `lim_(x -> 0) (("e"^x * "e"^x - 1)/"e"^x)/(sinx)`

= `lim_(x -> 0) ("e"^(2x) - 1)/("e"^x sinx)`

= `lim_(x -> 0) (1/"e"^x xx ("e"^(2x) - 1)/(1/2 xx 2x) xx x/sinx)`

= `(lim_(x -> 0) 1/"e"^x) 2(lim_(2x -> 0) ("e"^(2x) - 1)/(2x)) xx 1/((lim_(x -> 0) sinx/x))`

= `1/"e"^0 xx 2 xx 1 xx 1/1`

= `1/1 xx 2 xx 1`

`lim_(x -> 0) ("e"^x - "e"^(-x))/sinx` = 2

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 25 | पृष्ठ ११८

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×