Advertisements
Advertisements
प्रश्न
Evaluate the following limits:
`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`
उत्तर
`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx = lim_(x -> 0) ((sqrt(1 + sinx) sqrt(1 - sinx))(sqrt(1 + sinx) + sqrt(1 - sinx)))/(tanx(sqrt(1 - sinx) + sqrt(1 - sinx))`
= `lim_(x -> 0) ((1 + sinx) - (1 -sinx))/(sinx/cosx (sqrt(1 + sinx) + sqrt(1 - sin))`
= `lim_(x -> 0) (cosx[1 + sinx - 1 + sinx])/(sinx(sqrt(1 + sinx) + sqrt(1 - sinx))`
= `lim_(x -> 0) (cosx xx 2sinx)/(sinx(sqrt(1 + sinx) + sqrt(1 - sinx))`
= `2 lim_(x -> 0) cosx/((sqrt(1 + sinx) + sqrt(1 - sinx))`
= `2 x (cos 0)/((sqrt(1 + sin0) + sqrt(1 - sin))`
= `(2 xx 1)/((sqrt(1 + 0) + sqrt(1 - 0))`
= `2/(1 +1)`
= `2/2`
`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx` = 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit:
`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`
Evaluate the following limit:
`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`
Evaluate the following limit:
`lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following :
Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`
Evaluate the following :
`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`
In problems 1 – 6, using the table estimate the value of the limit.
`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`
x | 1.9 | 1.99 | 1.999 | 2.001 | 2.01 | 2.1 |
f(x) | 0.344820 | 0.33444 | 0.33344 | 0.333222 | 0.33222 | 0.332258 |
In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`
x | – 0.1 | – 0.01 | – 0.001 | 0.001 | 0.01 | 0.1 |
f(x) | 0.99833 | 0.99998 | 0.99999 | 0.99999 | 0.99998 | 0.99833 |
Sketch the graph of a function f that satisfies the given value:
f(– 2) = 0
f(2) = 0
`lim_(x -> 2) f(x)` = 0
`lim_(x -> 2) f(x)` does not exist.
Evaluate the following limits:
`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`
Evaluate the following limits:
`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`
An important problem in fishery science is to estimate the number of fish presently spawning in streams and use this information to predict the number of mature fish or “recruits” that will return to the rivers during the reproductive period. If S is the number of spawners and R the number of recruits, “Beverton-Holt spawner recruit function” is R(S) = `"S"/((alpha"S" + beta)` where `alpha` and `beta` are positive constants. Show that this function predicts approximately constant recruitment when the number of spawners is sufficiently large
Evaluate the following limits:
`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`
Evaluate the following limits:
`lim_(x -> 0) (tan 2x)/x`
Evaluate the following limits:
`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`
Evaluate the following limits:
`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`
Choose the correct alternative:
If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to
Choose the correct alternative:
The value of `lim_(x -> 0) sinx/sqrt(x^2)` is
`lim_(x -> 5) |x - 5|/(x - 5)` = ______.