मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: limx→0tan2xx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`

बेरीज

उत्तर

We know `lim_(x -> 0) (sinx)/x` = 1

`lim_(x -> 0) (tan 2x)/x =  lim_(x -> 0) (sin 2x)/(cos 2x) xx 1/x`

= `lim_(x -> 0) (sin 2x)/(1/2 xx (2x)) xx 1/(cos 2x)`

= `2(lim_(2x -> 0) (sin 2x)/(2x)) (lim_(x -> 0) 1/(cos 2x))`

= `2 xx 1 xx 1/(cos 0)`

`lim_(x -> 0) (tan 2x)/x = 2 xx 1 xx 1`

= 2

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 14 | पृष्ठ ११८

संबंधित प्रश्‍न

Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2)(2x + 3)` = 7


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x -> 0) (2 "arc"sinx)/(3x)`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Choose the correct alternative:

`lim_(x -> 3) [x]` =


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×