मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→1[x+x3+x5+...+x2n-1-nx-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`

बेरीज

उत्तर

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`

= `lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - (1 + 1 + 1 + ...  "n times"))/(x - 1)]`

= `lim_(x -> 1)[((x - 1) + (x^3 - 1) + (x^5 - 1) + ... + (x^(2"n" - 1) - 1) ... ("n brackets"))/(x - 1)]`  

(∵ 1, 3, 5, …, 2n – 1 are the first n odd numbers)

= `lim_(x -> 1)[(x^1 - 1^1)/(x - 1) + (x^3 - 1^3)/(x - 1) + (x^5 - 1^5)/(x - 1) + ... + (x^(2"n" - 1) - 1^(2"n" - 1))/(x - 1)]`

= 1(1)0 + 3(1)2 + 5(1)4 + … + (2n – 1) (1)2n–2 

= 1 + 3 + 5 + ... + (2n – 1)

= `sum_("r" = 1)^"n"(2"r" - 1)`

= `2 sum_("r" = 1)^"n" "r" - sum_("r" = 1)^"n" 1`

= `2*("n"("n" + 1))/2 - "n"`

= n(n + 1) – n

= n2 + n – n

= n2

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.1 [पृष्ठ १३९]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) sin pi x`


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(sqrt(x) -> 3) (x^2 - 81)/(sqrt(x) - 3)`


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> oo) (x^4 - 5x)/(x^2 - 3x + 1)`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x - oo){x[log(x + "a") - log(x)]}`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


Evaluate the following limits:

`lim_(x -> pi) (1 + sinx)^(2"cosec"x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


Choose the correct alternative:

The value of `lim_(x -> 0) sinx/sqrt(x^2)` is


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×