मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→0[1+x3-1+xx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`

बेरीज

उत्तर

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`

= `lim_(x -> 0) ((1 + x)^(1/3) - (1 + x)^(1/2))/x`

Put 1 + x = y        ⇒ x = y − 1

As x→0, y→1

∴ `lim_(x -> 0) ((1 + x)^(1/3) - (1 + x)^(1/2))/x`

= `lim_(y -> 1) (y^(1/3) - y^(1/2))/(y - 1)`

= `lim_(y -> 1) ((y^(1/3) - 1) - (y^(1/2) - 1))/(y - 1)`

= `lim_(y -> 1) ((y^(1/3) - 1)/(y - 1) - y^(1/2 - 1)/(y - 1))`

= `lim_(y -> 1) (y^(1/3) - 1^(1/3))/(y - 1) - lim_(y -> 1) (y^(1/2) - 1^(1/2))/(y - 1)`

= `1/3(1)^(-(2)/3) - 1/2(1)^(-(1)/2)    ...[because  lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)]`

= `1/3 - 1/2`

= `(2 - 3)/6`

= `-1/6`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.1 [पृष्ठ १३९]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


Evaluate the following :

`lim_(x -> 0) {1/x^12 [1 - cos(x^2/2) - cos(x^4/4) + cos(x^2/2) cos(x^4/4)]}`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


An important problem in fishery science is to estimate the number of fish presently spawning in streams and use this information to predict the number of mature fish or “recruits” that will return to the rivers during the reproductive period. If S is the number of spawners and R the number of recruits, “Beverton-Holt spawner recruit function” is R(S) = `"S"/((alpha"S" + beta)` where `alpha` and `beta` are positive constants. Show that this function predicts approximately constant recruitment when the number of spawners is sufficiently large


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (sin^3(x/2))/x^2`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) (1 - cos^2x)/(x sin2x)`


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


The value of `lim_(x→0)(sin(ℓn e^x))^2/((e^(tan^2x) - 1))` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×