मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

In problems 1 – 6, using the table estimate the value of the limitlimx→0sinxx x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1 f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833
तक्ता

उत्तर

Let f(x) = `sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x)

`(sin(- 0.1))/(- 0.1)`

= `(- sin(0.1))/(- 0.1)`

= 0.998

`(sin(- 0.01))/(- 0.01)`

= `(- sin(0.01))/(- 0.01)`

= 0.999

`(sin(- 0.001))/(- 0.001)`

= `(- sin(0.001))/(- 0.001)`

= 0.9999

`(sin(0.001))/(0.001)`

 = 0.9999

`(sin(0.01))/(0.01)`

 = 0.999

`(sin(0.1))/(0.1)`

 = 0.998

`lim_(x -> 0) sin x/x` = 1

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 5 | पृष्ठ ९५

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate : `lim_(x -> 3) (x^2 - 9)/(x - 3)` if it exists by finding `f(3^-)` and `f(3^+)`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 0)(1 + x)^(1/(3x))`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Evaluate the following limits:

`lim_(x -> pi) (sin3x)/(sin2x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + sinx) - sqrt(1 - sinx))/tanx`


Evaluate the following limits:

`lim_(x -> 0) ("e"^x - "e"^(-x))/sinx`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×