हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

In problems 1 – 6, using the table estimate the value of the limitlimx→0sinxx x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1 f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833 - Mathematics

Advertisements
Advertisements

प्रश्न

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833
सारिणी

उत्तर

Let f(x) = `sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x)

`(sin(- 0.1))/(- 0.1)`

= `(- sin(0.1))/(- 0.1)`

= 0.998

`(sin(- 0.01))/(- 0.01)`

= `(- sin(0.01))/(- 0.01)`

= 0.999

`(sin(- 0.001))/(- 0.001)`

= `(- sin(0.001))/(- 0.001)`

= 0.9999

`(sin(0.001))/(0.001)`

 = 0.9999

`(sin(0.01))/(0.01)`

 = 0.999

`(sin(0.1))/(0.1)`

 = 0.998

`lim_(x -> 0) sin x/x` = 1

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [पृष्ठ ९५]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 5 | पृष्ठ ९५

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> oo)(1 + "k"/x)^("m"/x)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(theta -> 0) (sinsqrt(theta))/(sqrt(sin theta)`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


If `lim_(x -> 1) (x + x^2 + x^3|+ .... + x^n - n)/(x - 1)` = 820, (n ∈ N) then the value of n is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×