हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: hhhlimh→0x+h-xh,x>0 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`

योग

उत्तर

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h" = lim_(x + "h" -> x) ((x + "h")^(1/2) - x^(1/2))/((x + "h") - x)`

x + h → x

⇒ h → 0

`lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1)`

= `1/2(x)^(1/2 - 1)`

= `1/2(x)^(-1/2)`

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h" = 1/2 xx 1/(x^(1/2))`

= `1/(2sqrt(x))`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [पृष्ठ १०२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 4 | पृष्ठ १०२

संबंधित प्रश्न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 1) (x^2 + x + 1)` = 3


Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> 3) (x^2 - 9)/(x^2(x^2 - 6x + 9))`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Evaluate the following limits:

`lim_(x -> oo) ((2x^2 + 3)/(2x^2 + 5))^(8x^2 + 3)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(x -> 0) (3^x - 1)/(sqrt(x + 1) - 1)`


Choose the correct alternative:

`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

If `f(x) = x(- 1)^([1/x])`, x ≤ 0, then the value of `lim_(x -> 0) f(x)` is equal to


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×