हिंदी

Evaluate the following : Find the limit of the function, if it exists, at x = 1 f(x) = {7-4xforx<1x2+2forx≥1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`

योग

उत्तर

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`

`lim_(x -> 1^-)` f(x) = `lim_(x -> 1)` (7 − 4x)

= 7 – 4(1)

= 3

`lim_(x -> 1^+)` f(x) = `lim_(x -> 1)` (x2 + 2)

= (1)2 + 2

= 3

∴ `lim_(x -> 1^-)` f(x) = `lim_(x -> 1^+)` f(x)

∴ `lim_(x -> 1^+)` f(x) exists and is equal to 3.

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.2 | Q II. (5) | पृष्ठ १५९

संबंधित प्रश्न

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

`lim_(x -> 0) [(sqrt(1 - cosx))/x]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 5) |x - 5|/(x - 5)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) sin pi x`


Sketch the graph of a function f that satisfies the given value:

f(0) is undefined

`lim_(x -> 0) f(x)` = 4

f(2) = 6

`lim_(x -> 2) f(x)` = 3


Sketch the graph of a function f that satisfies the given value:

f(– 2) = 0

f(2) = 0

`lim_(x -> 2) f(x)` = 0

`lim_(x -> 2) f(x)` does not exist.


Verify the existence of `lim_(x -> 1) f(x)`, where `f(x) = {{:((|x - 1|)/(x - 1)",",  "for"  x ≠ 1),(0",",  "for"  x = 1):}`


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x + 4) - 3)/(x - 5)`


Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Show that  `lim_("n" -> oo) (1^2 + 2^2 + ... + (3"n")^2)/((1 + 2 + ... + 5"n")(2"n" + 3)) = 9/25`


Evaluate the following limits:

`lim_(x -> oo)(1 + 1/x)^(7x)`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) ("e"^("a"x) - "e"^("b"x))/x`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x - oo) sqrt(x^2 - 1)/(2x + 1)` =


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

`lim_(x -> 3) [x]` =


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Choose the correct alternative:

`lim_(x -> oo) (1/"n"^2 + 2/"n"^2 + 3/"n"^2 + ... + "n"/"n"^2)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x -> 0) (sin 4x + sin 2x)/(sin5x - sin3x)` = ______.


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×