मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Find the left and right limits of f(x) = x2-4(x2+4x+4)(x+3) at x = – 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the left and right limits of f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2

बेरीज

उत्तर

f(x) = `(x^2 - 4)/((x^2 + 4x+ 4)(x + 3))` at x = – 2

f(x) = `((x + 2)(x - 2))/((x + 2)^2 (x + 3))`

f(x) = `(x - 2)/((x +2)(x +3))`

o find the let imit of f(x) at x = – 2

Put x = – 2 – h

Where h > 0

When x →  – 2

We have h → 0

`lim_(x -> - 2^-) f(x) =  lim_("h" -> 0) ((-2 - "h")- 2)/((-2  "h" + 2)(- 2 - "h" + 3)`

= `lim_("h" -> 0) (-4 - "h")/((- "h")(1 - "h"))`

=`lim_("h" -> 0) 1/"h" ((4 + "h")/(1 - "h"))`

= `1/0 ((4 + 0)/(1 - 0))`

= `oo`

`lim_(x -> - 2^-) f(x) = oo`

o find the right limit of f(x) at x = – 2

Put x = – 2 + h

Where h > 0

When x →  – 2

We have h → 0

`lim_(x -> - 2) f(x) =  lim_("h" -> 0) ((-2 + "h") - 2)/((-2 + "h" + 2)(-2 + "h" + 3))`

= `lim_("h" -> 0) (-4 + "h")/("h"(1 + "h"))`

= `lim_("h" -> 0) 1/"h"(("h" - 4)/(1 +"h"))`

= `1/0 ((0 - 4)/(1 + 0))`

= `- oo`

`lim_(x -> - 2^-) f(x) = - oo`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.3 [पृष्ठ १११]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.3 | Q 1. (a) | पृष्ठ १११

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(z -> -5)[((1/z + 1/5))/(z + 5)]`


Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


Evaluate the following :

Find the limit of the function, if it exists, at x = 1

f(x) = `{(7 - 4x, "for", x < 1),(x^2 + 2, "for", x ≥ 1):}`


Evaluate the following :

Given that 7x ≤ f(x) ≤ 3x2 – 6 for all x. Determine the value of `lim_(x -> 3) "f"(x)`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> - 3) (sqrt(1 - x) - 2)/(x + 3)`

x – 3.1  – 3.01 – 3.00 – 2.999 – 2.99 – 2.9
f(x) – 0.24845 – 0.24984 – 0.24998 – 0.25001 – 0.25015 – 0.25158

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) f(x)` where `f(x) = {{:(x^2 + 2",", x ≠ 1),(1",", x = 1):}`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


If the limit of f(x) as x approaches 2 is 4, can you conclude anything about f(2)? Explain reasoning


Evaluate the following limits:

`lim_(x -> "a") (sqrt(x - "b") - sqrt("a" - "b"))/(x^2 - "a"^2) ("a" > "b")`


A tank contains 5000 litres of pure water. Brine (very salty water) that contains 30 grams of salt per litre of water is pumped into the tank at a rate of 25 litres per minute. The concentration of salt water after t minutes (in grams per litre) is C(t) = `(30"t")/(200 + "t")`. What happens to the concentration as t → ∞?


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(x -> 0) (2^x - 3^x)/x`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Choose the correct alternative:

`lim_(x -> oo) ((x^2 + 5x + 3)/(x^2 + x + 3))^x` is


Choose the correct alternative:

`lim_(x -> 0) (x"e"^x - sin x)/x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×