मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

Evaluate the following limits: aabblimx→0x2+a2-ax2+b2-b - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`

बेरीज

उत्तर

We know `lim_(x -> "a") (x^"n" - "a"^"a")/(x -"a") = "na"^("n" - 1)`

`lim_(x -> 0)((sqrt((x^2 + "a"^2)) - "a")/(sqrt((x^2 + "b"^2)) - "b")) =  lim_(x -> 0)(((x^2 + "a"^2)^(1/2) - ("a"^2)^(1/2))/((x^2 + "b"^2)^(1/2) - ("b"^2)^(1/2)))`

= `lim_(x -> 0) ((x^2 + "a"^2)^(1/2) - ("a"^2)^(1/2))/x^2 xx x^2/((x^2 + "b"^2)^(1/2) - ("b"^2)^(1/2))`

= `lim_(x -> 0) ((x^2 + "a"^2)^(1/2) - ("a"^2)^(1/2))/((x^2 + "a"^2) - "a"^2) xx ((x^2 + "b"^2) - "b"^2)/((x^2 + "b"^2)^(1/2) - ("b"^2)^(1/2))`

= `lim_(x -> 0) ((x^2 + "a"^2)^(1/2) - ("a"^2)^(1/2))/((x^2 + "a"^2) - "a"^2) xx lim_(x -> 0) 1/(((x^2 + "b"^2)^(1/2) - ("b"^2)^(1/2))/((x^2 + "b"^2) - "b"^2)`

Put x2 + a2 = y

Put x2 + b2 = z

When x = 0

⇒ y = a2

When x = 0

⇒ z = b2 

= `lim_(y -> "a"^2)((y^(1/2) -  ("a"^2)^(1/))/(y - "a"^2)) xx 1/(lim_(x -> "b"^2)(("z"^(1/2) - ("b"^2)^(1/2))/("z" - "b"^2))`

= `1/2 ("a"^2)^(1/2 - 1) xx 1/(1/2 ("b"^2)^(1/2 - 1))`

= `(("a"^2)^(- 1/2))/(("b"^2)^(- 1/2))`

= `("a"^(- 1))/("b"^(- 1))`

= `"b"/"a"`

`lim_(x -> 0)((sqrt((x^2 + "a"^2)) - "a")/(sqrt((x^2 + "b"^2)) - "b")) = "b"/"a"`

shaalaa.com
Concept of Limits
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 11 | पृष्ठ ११८

संबंधित प्रश्‍न

Evaluate the following limit:

`lim_(z -> -3) [sqrt("z" + 6)/"z"]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) 1/(x - 3)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


Evaluate the following limits:

`lim_("h" -> 0) (sqrt(x + "h") - sqrt(x))/"h", x > 0`


Evaluate the following limits:

`lim_(x -> 1) (root(3)(7 + x^3) - sqrt(3 + x^2))/(x - 1)`


Evaluate the following limits:

`lim_(x -> oo) (1 + x - 3x^3)/(1 + x^2 +3x^3)`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


An important problem in fishery science is to estimate the number of fish presently spawning in streams and use this information to predict the number of mature fish or “recruits” that will return to the rivers during the reproductive period. If S is the number of spawners and R the number of recruits, “Beverton-Holt spawner recruit function” is R(S) = `"S"/((alpha"S" + beta)` where `alpha` and `beta` are positive constants. Show that this function predicts approximately constant recruitment when the number of spawners is sufficiently large


Evaluate the following limits:

`lim_(x -> oo) x [3^(1/x) + 1 - cos(1/x) - "e"^(1/x)]`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


`lim_(x→0^+)(int_0^(x^2)(sinsqrt("t"))"dt")/x^3` is equal to ______.


`lim_(x→-1) (x^3 - 2x - 1)/(x^5 - 2x - 1)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×