English

Evaluate the following : limx→1[x+3x2+5x3+...+(2n-1)xn-n2x-1] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`

Sum

Solution

`lim_(x -> 1) [(x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n" - "n"^2)/(x - 1)]`

1 + 3 + 5 + … + (2n – 1)

= `sum_("r" = 1)^"n" (2"r" - 1)`

= `2 sum_("r" = 1)^"n" "r" - sum_("r" = 1)^"n" 1`

= `2("n"("n" + 1))/2 - "n"`

= n(n + 1) – n

= n2 + n – n

= n2

∴ n2 = 1 + 3 + 5 + … + (2n – 1).

∴ Required limit

= `lim_(x -> 1) ([ x + 3x^2 + 5x^3 + ... + (2"n" - 1)x^"n"] - [1 + 3 + 5 + ... + (2"n" - 1)])/(x - 1)`

= `lim_(x -> 1) ((x - 1) + (3x^2 - 3) + (5x^2 - 5) + ... + (2"n" - 1)x^"n" - (2"n" - 1))/(x - 1)`

= `lim_(x -> 1) [(x - 1)/(x - 1) + (3(x^2 - 1))/(x - 1) + (5(x^3 - 1))/(x - 1) + ... + ((2"n" - 1)(x^"n" - 1))/(x - 1)]`

= `lim_(x -> 1) ((x^1 - 1^1)/(x - 1)) + 3lim_(x -> 1) ((x^2 - 1^2)/(x - 1)) + 5lim_(x -> 1)((x^3 - 1^3)/(x - 1)) + ... + (2"n" - 1) lim_(x -> 1) ((x^"n" - 1^"n")/(x - 1))`

= 1(1)0 + 3(2)(1)1 + 5(3)(1)2 + … + (2n – 1) n(1)n–1 

= 1(1) + 3(2) + 5(3) + … + (2n – 1)n

= `sum_("r" = 1)^"n" (2"r" - 1)"r"`

= `sum_("r" = 1)^"n" (2"r"^2 - "r")`

= `2 sum_("r" = 1)^"n" "r"^2 - sum_("r" = 1)^"n" "r"`

= `2* ("n"("n" + 1)(2"n" + 1))/6 - ("n"("n" + 1))/2`

= `"n"("n" + 1)((2"n" + 1)/3 - 1/2)`

= `"n"("n" + 1) ((4"n" + 2- 3)/6)`

= `("n"("n" + 1) (4"n" - 1))/6`

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 7: Limits - Miscellaneous Exercise 7.2 [Page 159]

APPEARS IN

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit :

`lim_(x -> 0)[(root(3)(1 + x) - sqrt(1 + x))/x]`


Evaluate the following limit :

`lim_(y -> 1)[(2y - 2)/(root(3)(7 + y) - 2)]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> 2) (x^2 - 1)` = 3


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) sin x/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.99833 0.99998 0.99999 0.99999 0.99998 0.99833

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Write a brief description of the meaning of the notation `lim_(x -> 8) f(x)` = 25


Evaluate the following limits:

`lim_(x -> 2) (1/x - 1/2)/(x - 2)`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x -> oo) (x^3 + x)/(x^4 - 3x^2 + 1)`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Evaluate the following limits:

`lim_(x -> 0) (sin("a" + x) - sin("a" - x))/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(x^2 + "a"^2) - "a")/(sqrt(x^2 + "b"^2) - "b")`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Evaluate the following limits:

`lim_(x -> ) (sinx(1 - cosx))/x^3`


Evaluate the following limits:

`lim_(x -> 0) (tan x - sin x)/x^3`


Choose the correct alternative:

`lim_(x -> oo) sinx/x`


Choose the correct alternative:

`lim_(x -> 0) sqrt(1 - cos 2x)/x`


Choose the correct alternative:

`lim_(x -> 0) ("a"^x - "b"^x)/x` =


Choose the correct alternative:

`lim_(x -> 0) (8^x - 4x - 2^x + 1^x)/x^2` =


Choose the correct alternative:

`lim_(alpha - pi/4) (sin alpha - cos alpha)/(alpha - pi/4)` is


If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.


`lim_(x -> 0) ((2 + x)^5 - 2)/((2 + x)^3 - 2)` = ______.


`lim_(x -> 5) |x - 5|/(x - 5)` = ______.


`lim_(x→∞)((x + 7)/(x + 2))^(x + 4)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×