English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

In problems 1 – 6, using the table estimate the value of the limitlimx→0x+3-3x x – 0.1 – 0.01 – 0.001 0.001 0.01 0.1 f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631 - Mathematics

Advertisements
Advertisements

Question

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x) 0.2911 0.2891 0.2886 0.2886 0.2885 0.28631
Chart

Solution

Let f(x) = `lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x`

x – 0.1  – 0.01 – 0.001 0.001 0.01 0.1
f(x)

`(sqrt(3 - 0.1) - sqrt(3))/(- 0.1)`

= `(1.703 - 1.732)/(- 0.1)`

= 0.29

`(sqrt(3 - 00.1) - sqrt(3))/(- 0.01)`

= `(1.703 - 1.732)/(- 0.01)`

= 0.288

`(sqrt(3 - 0.001) - sqrt(3))/(- 0.001)`

= `(0.000284)/(- 0.001)`

= 0.288

`(sqrt(3 + 0.001) - sqrt(3))/(- 0.001)`

= `(0.000289)/(0.001)`

= 0.289

`(sqrt(3 + 0.01) - sqrt(3))/(0.01)`

= `(0.00288)/(0.01)`

= 0.288

`(sqrt(3 + 0.1) - sqrt(3))/(0.1)`

= `(0.0286)/(0.1)`

= 0.286

`lim_(x -> 0) (sqrt(x + 3) - sqrt(3))/x` = 0.288

shaalaa.com
Concept of Limits
  Is there an error in this question or solution?
Chapter 9: Differential Calculus - Limits and Continuity - Exercise 9.1 [Page 95]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 9 Differential Calculus - Limits and Continuity
Exercise 9.1 | Q 3 | Page 95

RELATED QUESTIONS

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit:

If `lim_(x -> 1)[(x^4 - 1)/(x - 1)]` = `lim_(x -> "a")[(x^3 - "a"^3)/(x - "a")]`, find all possible values of a


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 1) (x^2 + 2)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 2) f(x)` where `f(x) = {{:(4 - x",", x ≠ 2),(0",", x = 2):}`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Find the left and right limits of f(x) = tan x at x = `pi/2`


Evaluate the following limits:

`lim_(x  -> oo) 3/(x - 2) - (2x + 11)/(x^2 + x - 6)`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Show that `lim_("n" -> oo) (1 + 2 + 3 + ... + "n")/(3"n"^2 + 7n" + 2) = 1/6`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/(sin 5x)`


Evaluate the following limits:

`lim_(x -> 0) (tan 2x)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(2) - sqrt(1 + cosx))/(sin^2x)`


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


The value of `lim_(x rightarrow 0) (sqrt((1 + x^2)) - sqrt(1 - x^2))/x^2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×