हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→∞(1+3x)x+2 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`

योग

उत्तर

We know `lim_(x -> oo) (1 + "k"/x)^x` = ek

`lim_(x -> oo) (1 + 3/x)^(x + 2) =  lim_(x -> oo) (1 + 3/x)^x * (1 + 3/x)^2`

= `lim_(x -> oo) (1 + 3/x)^x xx lim_(x -> oo) (1 + 3/x)^2`

= `"e"^3 xx (1 + 3/oo)^2`

= `"e"^3 xx (1 + 0)`

= e3 

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.4 [पृष्ठ ११८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.4 | Q 5 | पृष्ठ ११८

संबंधित प्रश्न

Evaluate the following limit:

`lim_(x -> 3)[sqrt(2x + 6)/x]`


Evaluate the following limit:

`lim_(x -> 2)[(x^(-3) - 2^(-3))/(x - 2)]`


Evaluate the following limit :

`lim_(z -> "a")[((z + 2)^(3/2) - ("a" + 2)^(3/2))/(z - "a")]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


In problems 1 – 6, using the table estimate the value of the limit.

`lim_(x -> 2) (x - 2)/(x^2 - x - 2)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.344820 0.33444 0.33344 0.333222 0.33222 0.332258

In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 2) (x - 2)/(x^2 - 4)`

x 1.9 1.99 1.999 2.001 2.01 2.1
f(x) 0.25641 0.25062 0.250062 0.24993 0.24937 0.24390

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 3) (4 - x)`


In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> x/2) tan x`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


If f(2) = 4, can you conclude anything about the limit of f(x) as x approaches 2?


Evaluate the following limits:

`lim_(x ->) (x^"m" - 1)/(x^"n" - 1)`, m and n are integers


Evaluate the following limits:

`lim_(x -> 1) (sqrt(x) - x^2)/(1 - sqrt(x))`


Evaluate the following limits:

`lim_(x -> 2) (2 - sqrt(x + 2))/(root(3)(2) - root(3)(4 - x))`


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 - x) - 1)/x^2`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Evaluate the following limits:

`lim_(x -> 0) (sinalphax)/(sinbetax)`


Choose the correct alternative:

`lim_(x - pi/2) (2x - pi)/cos x`


Choose the correct alternative:

`lim_(x -> 0) ("e"^(sin x) - 1)/x` =


Choose the correct alternative:

`lim_(x -> 0) ("e"^tanx - "e"^x)/(tan x - x)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×