हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Evaluate the following limits: limx→01+x-1x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following limits:

`lim_(x -> 0) (sqrt(1 + x) - 1)/x`

योग

उत्तर

`lim_(x -> 0) (sqrt(1 + x) - 1)/x =  lim_(x -> 0) ((sqrt(1 + x) - 1))/x xx (sqrt(1 + x) + 1)/(sqrt(1 + x) + 1)`

= `lim_(x -> 0) [((1 + x) - 1)/(x(sqrt(1 + x) + 1))]`

= `lim_(x -> 0) [x/(x(sqrt(1 + x) + 1))]`

= `lim_(x -> 0) [1/(sqrt(1 + x) + 1)]`

= `1/(sqrt(1 + 0) + 1)`

= `1/(1 + 1)`

`lim_(x -> 0) (sqrt(1 + x) - 1)/x = 1/2`

shaalaa.com
Concept of Limits
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Calculus - Limits and Continuity - Exercise 9.2 [पृष्ठ १०३]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 9 Differential Calculus - Limits and Continuity
Exercise 9.2 | Q 9 | पृष्ठ १०३

संबंधित प्रश्न

Evaluate the following limit:

`lim_(y -> -3) [(y^5 + 243)/(y^3 + 27)]`


Evaluate the following limit :

`lim_(x -> 1)[(x + x^2 + x^3 + ......... + x^"n" - "n")/(x - 1)]`


Evaluate the following limit : 

If `lim_(x -> 5) [(x^"k" - 5^"k")/(x - 5)]` = 500, find all possible values of k.


Evaluate the following limit :

`lim_(x -> 7) [(x^3 - 343)/(sqrt(x) - sqrt(7))]`


Evaluate the following limit :

`lim_(x -> 1) [(x + x^3 + x^5 + ... + x^(2"n" - 1) - "n")/(x - 1)]`


In the following example, given ∈ > 0, find a δ > 0 such that whenever, |x – a| < δ, we must have |f(x) – l| < ∈.

`lim_(x -> -3) (3x + 2)` = – 7


Evaluate the following :

`lim_(x -> 0)[x/(|x| + x^2)]`


In problems 1 – 6, using the table estimate the value of the limit
`lim_(x -> 0) (cos x - 1)/x`

x – 0.1  – 0.01 – 0.001 0.0001 0.01 0.1
f(x) 0.04995 0.0049999 0.0004999 – 0.0004999 – 0.004999 – 0.04995

In exercise problems 7 – 15, use the graph to find the limits (if it exists). If the limit does not exist, explain why?

`lim_(x -> 0) sec x`


Sketch the graph of f, then identify the values of x0 for which `lim_(x -> x_0)` f(x) exists.

f(x) = `{{:(sin x",", x < 0),(1 - cos x",", 0 ≤ x ≤ pi),(cos x",", x > pi):}`


Evaluate the following limits:

`lim_(x -> 2) (x^4 - 16)/(x - 2)`


Evaluate the following limits:

`lim_(x - 0) (sqrt(1 + x^2) - 1)/x`


Evaluate the following limits:

`lim_(x -> 5) (sqrt(x - 1) - 2)/(x - 5)`


Evaluate the following limits:

`lim_(x ->oo) (x^3/(2x^2 - 1) - x^2/(2x + 1))`


Evaluate the following limits:

`lim_(x -> oo) (1 + 3/x)^(x + 2)`


Evaluate the following limits:

`lim_(alpha -> 0) (sin(alpha^"n"))/(sin alpha)^"m"`


Evaluate the following limits:

`lim_(x-> 0) (1 - cos x)/x^2`


Evaluate the following limits:

`lim_(x -> oo) ((x^2 - 2x + 1)/(x^2 -4x + 2))^x`


Choose the correct alternative:

If `lim_(x -> 0) (sin "p"x)/(tan 3x)` = 4, then the value of p is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×