Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Solution
Put x = 1 + h.
Then x – 1 = h
and as x → 1, h → 0
∴ `lim_(x -> 1) (2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))`
= `lim_(x -> 1) (2^(2(x - 1)) - 2^x + 1)/(sin^2 (x - 1))`
= `lim_("h" -> 0) (2^(2"h") - 2^(1 + "h") + 1)/(sin^2"h")`
= `lim_("h" -> 0) (2^(2"h") - 2*2^"h" + 1)/(sin^2"h")`
= `lim_("h" -> 0) (2^"h" - 1)^2/(sin^2"h")`
= `lim_("h" -> 0) ((2^"h" - 1)/"h")^2/((sin"h")/"h")^2` ...[∵ h → 0 ∴ h ≠ 0]
= `(lim_("h" -> 0) (2^"h" - 1)/"h")^2/(lim_("h" -> 0) sin"h"/"h")^2`
= `(log 2)^2/(1)^2 ...[∵ lim_(x -> 0) ("a"^x - 1)/x = log "a"]`
= (log 2)2
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______