Advertisements
Advertisements
Question
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Solution
Put `π/6 − "h" = x`
∴ h = `π/6 − x`
Then as `x→π/6, "h"→0`
∴ `lim_(x→π/6) [(2sinx − 1)/(π - 6x)]`
= `lim_("h"→0) [(2sin(π/6 − "h") - 1)/(π − 6(π/6 − "h"))]`
= `lim_("h"→0) (2[sin(π/6 − "h") - 1/2])/(6"h")`
= `1/3 lim_("h"→0) (sin(π/6 − "h") − sin π/6)/"h"`
= `1/3 lim_("h"→0) (2cos((π/6 − "h" + π/6)/2).sin((π/6 − "h" − π/6)/2))/"h"`
= `1/3 lim_("h"→0) (2cos(π/6 − "h"/2).sin("−h"/2))/"h"`
= `(−1)/3 lim_("h"→0) cos(π/6 − "h"/2).sin("h"/2)/("h"/2)`
= `(−1)/3 lim_("h"→0) cos(π/6 − "h"/2). lim_("h"→0) sin("h"/2)/("h"/2)`
= `(−1)/3. cos (π/6 − 0).(1) ...[∵ lim_(θ →0) (sin pθ)/(pθ) = 1]`
= `(−1)/3 × sqrt3/2`
= `(−1)/(2sqrt3)`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______