Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Solution
Put x = `pi/6 + "h"`.
Then as `x -> pi/6, "h" -> 0`.
Also, 6x – π = `6(pi/6 + "h") - pi` = π + 6h – π = 6h and
`sqrt(3)cos x + sinx = sqrt(3)cos(pi/6 + "h") + sin(pi/6 + "h")`
= `sqrt(3)(cos pi/6 cos "h" - sin pi/6 sin"h") + (sin pi/6 cos"h" + cos pi/6 sin"h")`
= `sqrt(3)(sqrt(3)/2 cos"h" - 1/2 sin"h") + (1/2 cos"h" + sqrt(3)/2 sin"h")`
= `3/2 cos"h" - sqrt(3)/2 sin"h" + 1/2 cos"h" + sqrt(3)/2 sin"h"`
= 2 cos h
∴ `lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
= `lim_(x -> pi/6) (2 - (sqrt(3) cosx + sinx))/(6x - pi)^2`
= `lim_("h" -> 0) (2 - 2cos"h")/(6"h")^2`
= `lim_("h" -> 0) (2(1 - cos"h"))/(36"h"^2)`
= `lim_("h" -> 0) (1 - cos"h")/(18"h"^2) * (1 + cos"h")/(1 + cos"h")`
= `lim_("h" -> 0) (1 - cos^2"h")/(18"h"^2(1 + cos"h"))`
= `lim_("h" -> 0) (sin^2"h")/(18"h"^2(1 + cos"h"))`
= `1/18 lim_("h" -> 0) ((sin"h")/"h")^2 xx 1/(1 + cos "h")`
= `1/18(lim_("h" -> 0) (sin"h")/"h")^2 xx 1/(lim_("h" -> 0) (1 + cos"h")`
= `1/18(1)^2 xx 1/(1 + 1)`
= `1/36`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______