Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Solution
`lim_(x -> "a") (sinx - sin"a")/(root(5)(x) - root(5)("a"))`
= `lim_(x -> "a") (2cos((x + "a")/2) sin((x - "a")/2))/(root(5)(x) - root(5)("a"))`
= `lim_(x -> "a") (2cos((x + "a")/2) sin((x - "a")/2)/(((x - "a")/2)))/(((root(5)(x) - root(5)("a"))/(x - "a"))) xx 1/2 ...[(because x -> "a""," x ≠ "a"),(therefore x - "a" ≠ 0)]`
= `([lim_(x -> "a") cos((x + "a")/2)] xx [lim_(x -> "a") (sin((x - "a")/2))/(((x - "a")/2))])/(lim_(x -> "a") ((x^(1/5) - "a"^(1/5))/(x - "a"))`
= `(cos(("a" + "a")/2)*1)/(1/5"a"^(-4/5)) ...[(because x -> "a""," x ≠ "a" therefore (x - "a")/2 ->0),("and" lim_(theta -> 0) (sin theta)/theta = 1),("Also""," lim_(x -> "a") (x^"n" - "a"^"n")/(x - "a") = "na"^("n" - 1))]`
= `5"a"^(4/5) cos"a"`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______