English

Evaluate the following : limx→a[sin(x)-sin(a)x-a] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`

Sum

Solution

`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`

Put `sqrt(x)` = y, `sqrt("a")` = b and y = b + h.

As x → a, y → b and h → 0.

∴ `lim_(x -> "a") (sinsqrt(x) - sinsqrt"a")/(x - "a")`

= `lim_(y -> "b") (siny - sin"b")/(y^2 - "b"^2)`

= `lim_(y -> "b") (siny - sin"b")/((y - "b")(y + "b"))`

= `lim_("h" -> 0) (sin("b" + "h") - sin"b")/("h"("b" + "h" + "b"))`

= `lim_("h" -> 0) (2cos(("b" + "h" + "b")/2)sin(("b" + "h" - "b")/2))/("h"(2"b" + "h")`

= `lim_("h" -> 0) (2cos("b" + "h"/2)*sin("h"/2))/("h"(2"b" + "h"))`

= `lim_("h" -> 0) (cos["b" + ("h"/2)])/(2"b"+"h")* (sin ("h"/2))/("h"/2)`

= `lim_("h" -> 0) (cos["b" + ("h"/2)])/(2"b" + "h")* [lim_("h" -> 0) (sin("h"/2))/("h"/2)]`

= `(cos("b" + 0))/(2"b" + 0)*1  ...[because "h" -> 0"," "h"/2 -> 0  "and" lim_(theta -> 0) sintheta/theta = 1]`

= `cos"b"/(2"b")`

= `cossqrt("a")/(2sqrt("a"))`

shaalaa.com
Substitution Method
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.5 [Page 151]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×