Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Solution
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
= `lim_(x -> pi/4) [(sqrt(2) - (cos x + sinx))/[4(x - pi/4)]^2]`
Put `x - pi/4` = h
∴ x = `pi/4 + "h"`
As `x -> pi/4, "h" -> 0`
Also,
cos x + sin x = `cosx + cos(pi/2 - x)`
= `cos(pi/4 + "h") + cos[pi/2 - (pi/4 + "h")]`
= `cos(pi/4 + "h") + cos(pi/4 - "h")`
= `2cos pi/4.cos"h"` ...(By defactorisation)
= `2(1/sqrt(2))cos"h"`
= `sqrt(2)cos"h"`
∴ Required limit
= `lim_("h" -> 0) (sqrt(2) - sqrt(2)cos"h")/(4"h")^2`
= `lim_("h" -> 0) (sqrt(2) (1 - cos"h"))/(16"h"^2)`
= `sqrt(2)/16 lim_("h" -> 0) ((1 - cos"h")/"h"^2 xx (1 + cos"h")/(1 + cos"h"))`
= `1/(8sqrt(2)) lim_("h" -> 0) (sin^2"h")/("h"^2 (1 + cos"h"))`
= `1/(8sqrt(2)) lim_("h" -> 0) ((sin"h")/"h")^2 xx 1/(1 + cos"h")`
= `1/(8sqrt(2)) lim_("h" -> 0) ((sin"h")/"h")^2 xx lim_("h" -> 0) 1/(1 + cos"h")`
= `1/(8sqrt(2)) xx (1)^2 xx 1/(1 +1)`
= `1/(8sqrt(2)) xx 1/2`
= `1/(16sqrt(2))`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______