English

Evaluate the following : limx→π4[2-cosx-sinx(4x-π)2] - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :

`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`

Sum

Solution

`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`

= `lim_(x -> pi/4) [(sqrt(2) - (cos x + sinx))/[4(x - pi/4)]^2]`

Put `x - pi/4` = h

∴ x = `pi/4 + "h"`

As `x -> pi/4, "h" -> 0`

Also,

cos x + sin x = `cosx + cos(pi/2 - x)`

= `cos(pi/4 + "h") + cos[pi/2 - (pi/4 + "h")]`

= `cos(pi/4 + "h") + cos(pi/4 - "h")`

= `2cos  pi/4.cos"h"`    ...(By defactorisation)

= `2(1/sqrt(2))cos"h"`

= `sqrt(2)cos"h"`

∴ Required limit

= `lim_("h" -> 0) (sqrt(2) - sqrt(2)cos"h")/(4"h")^2`

= `lim_("h" -> 0) (sqrt(2) (1 - cos"h"))/(16"h"^2)`

= `sqrt(2)/16 lim_("h" -> 0) ((1 - cos"h")/"h"^2 xx (1 + cos"h")/(1 + cos"h"))`

= `1/(8sqrt(2)) lim_("h" -> 0) (sin^2"h")/("h"^2 (1 + cos"h"))`

= `1/(8sqrt(2)) lim_("h" -> 0) ((sin"h")/"h")^2 xx 1/(1 + cos"h")`

= `1/(8sqrt(2)) lim_("h" -> 0) ((sin"h")/"h")^2 xx lim_("h" -> 0) 1/(1 + cos"h")`

= `1/(8sqrt(2)) xx (1)^2 xx 1/(1 +1)`

= `1/(8sqrt(2)) xx 1/2`

= `1/(16sqrt(2))`

shaalaa.com
Substitution Method
  Is there an error in this question or solution?
Chapter 7: Limits - Exercise 7.5 [Page 150]
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×