Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Solution
Put x = `pi/6 + "h"`. Then as `x -> pi/6, "h" -> 0`.
Also, π – 6x = `pi - 6(pi/6 + "h")` = π – π – 6h = – 6h
and `cos x - sqrt(3) sinx = cos (pi/6 + "h") - sqrt(3) sin (pi/6 + "h")`
= `(cos pi/6 cos "h" - sin pi/6 sin "h") - sqrt(3) (sin pi/6 cos "h" + cos pi/6 sin "h")`
= `((sqrt(3))/2 cos "h" - 1/2 sin "h") - sqrt(3) (1/2 cos "h" + sqrt(3)/2 sin "h")`
= `sqrt(3)/2 cos "h" - 1/2 sin "h" - sqrt(3)/2 cos "h" -3/2 sin "h"`
= – 2 sin h
∴ `lim_(x -> pi/6) (cos x - sqrt(3) sinx)/(pi - 6x)`
= `lim_("h" -> 0) (-2 sin "h")/(-6"h")`
= `1/3 lim_("h" -> 0) sin "h"/"h"`
= `1/3 xx 1`
= `1/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______