Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Solution
Put `pi/2 - x` = h,
∴ x = `pi/2 - "h"`
As `x -> pi/2"`, `"h" -> 0`
∴ `lim_(x -> pi/2) ("cosec" x - 1)/(pi/2 - x)^2 = lim_("h" -> 0) ("cosec"(pi/2 - "h") - 1)/"h"^2`
= `lim_("h" -> 0) (sec"h" - 1)/"h"^2 ...[because "cosec" (pi/2 - theta) = sec theta]`
= `lim_("h" -> 0) (1/cos"h" - 1)/"h"^2`
= `lim_("h" -> 0) (1 - cos"h")/("h"^2* cos"h")`
= `lim_("h" -> 0) (2sin^2 "h"/2)/"h"^2 * 1/cos"h"`
= `2 lim_("h" -> 0) ((sin "h"/2)/("h"/2))^2 * 1/4 * 1/cos"h"`
= `1/2 lim_("h" -> 0) ((sin "h"/2)/("h"/2))^2 lim_("h" -> 0) 1/(cos "h"`
= `1/2(1)^2 xx 1/cos0 ...[because "h" -> 0, "h"/2 -> 0 "and" lim_(theta -> 0) sintheta/theta = 1]`
= `1/2 xx 1`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______