हिंदी

Evaluate the following: ππlimx→π6[2sinx−1π−6x] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`

योग

उत्तर

Put `π/6 − "h" = x`

∴ h = `π/6 − x`

Then as `x→π/6, "h"→0`

∴ `lim_(x→π/6) [(2sinx − 1)/(π - 6x)]`

= `lim_("h"→0) [(2sin(π/6 − "h") - 1)/(π − 6(π/6 − "h"))]`

= `lim_("h"→0) (2[sin(π/6 − "h") - 1/2])/(6"h")`

= `1/3 lim_("h"→0) (sin(π/6 − "h") − sin  π/6)/"h"`

= `1/3 lim_("h"→0) (2cos((π/6 − "h" + π/6)/2).sin((π/6 − "h" − π/6)/2))/"h"`

= `1/3 lim_("h"→0) (2cos(π/6 − "h"/2).sin("−h"/2))/"h"`

= `(−1)/3 lim_("h"→0) cos(π/6 − "h"/2).sin("h"/2)/("h"/2)`

= `(−1)/3 lim_("h"→0) cos(π/6 − "h"/2). lim_("h"→0) sin("h"/2)/("h"/2)`

= `(−1)/3. cos (π/6 − 0).(1)              ...[∵ lim_(θ →0) (sin pθ)/(pθ) = 1]`

= `(−1)/3 × sqrt3/2`

= `(−1)/(2sqrt3)`

shaalaa.com
Substitution Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Exercise 7.5 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Exercise 7.5 | Q II. (1) | पृष्ठ १५०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×