Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
उत्तर
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Put π – x = h
∴ x = π – h
As x → π, h → 0
∴ `lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
= `lim_("h" -> 0) [(sqrt(5 + cos (pi - "h")) - 2)/("h")^2]`
= `lim_("h" -> 0) [(sqrt(5 - cos "h") - 2)/"h"^2]`
= `lim_("h" -> 0) [(sqrt(5 - cos "h") - 2)/"h"^2 xx (sqrt(5 - cos"h") + 2)/(sqrt(5 - cos"h") + 2)]`
= `lim_("h" -> 0) (5 - cos"h" - 4)/("h"^2(sqrt(5 - cos"h") + 2))`
= `lim_("h" -> 0) (1 - cos"h")/("h"^2(sqrt(5 - cos"h") + 2))`
= `lim_("h" -> 0) (1 - cos"h")/("h"^2(sqrt(5 - cos"h") + 2)) xx (1 + cos"h")/(1 + cos"h")`
= `lim_("h" -> 0) (sin^2"h")/("h"^2(sqrt(5 - cos"h") + 2)(1 + cos"h"))`
= `lim_("h" -> 0) (sin"h"/"h")^2 xx 1/((sqrt(5 - cos"h") + 2)(1 + cos"h"))`
= `lim_("h" -> 0) (sin"h"/"h")^2 xx lim_("h" -> 0) 1/((sqrt(5 - cos"h") + 2)(1 + cos"h"))`
= `(1)^2 xx 1/((sqrt(5 - 1) + 2)(1 + 1))`
= `1/((sqrt(4) + 2)(2)`
= `1/((2 + 2)(2))`
= `1/8`
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______