Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> 1) [(1 - x^2)/(sinpix)]`
उत्तर
`lim_(x -> 1) (1 - x^2)/(sinpix) = (1 - x 1 + x)/(sinpix)`
Put 1 – x = h,
∴ x = 1 – h
As x → 1, h → 0
∴ `lim_(x -> 1) (1 - x 1 + x)/(sinpix)`
= `lim_("h" -> 0) (("h")(1 + 1 - "h"))/(sin pi (1 - "h"))`
= `lim_("h" -> 0) (("h")(2 - "h"))/(sin (pi - pi"h"))`
= `lim_("h" -> 0) (("h")(2 - "h"))/(sin pi"h")` ...[∵ sin (π – θ) = sin θ]
= `lim_("h" -> 0) ((2 - "h"))/(((sin pi"h")/(pi"h"))*pi)`
= `1/pi * (lim_("h" -> 0) (2 - "h"))/(lim_("h" -> 0) ((sin pi"h")/(pi"h"))`
= `1/pi* ((2 - 0))/1 ...[because "h" -> 0"," pi"h" -> 0 "and" lim_(theta -> 0) (sintheta)/theta = 1]`
= `2/pi`
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
`lim_(x -> pi/2) [("cosec"x - 1)/(pi/2 - x)^2]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(root(5)(x) - root(5)("a"))]`
Evaluate the following :
`lim_(x -> pi) [(sqrt(5 + cosx) - 2)/(pi - x)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(cos x - sqrt(3) sinx)/(pi - 6x)]`
Evaluate the following:
`lim_(x→π/6) [(2sinx − 1)/(π − 6x)]`
Evaluate the following :
`lim_(x -> pi/4) [(sqrt(2) - cosx - sinx)/(4x - pi)^2]`
Evaluate the following :
`lim_(x -> pi/6) [(2 - sqrt(3)cosx - sinx)/(6x - pi)^2]`
Evaluate the following :
`lim_(x -> "a") [(sin(sqrt(x)) - sin(sqrt("a")))/(x - "a")]`
Evaluate the following:
`lim_(x -> pi/2) [(cos3x + 3cosx)/(2x - pi)^3]`
Evaluate the following :
`lim_(x -> 0)[((1 - x)^5 - 1)/((1 - x)^3 - 1)]`
Evaluate the following :
`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`
Evaluate the following :
`lim_(x -> 1) [(4^(x - 1) - 2^x + 1)/(x - 1)^2]`
Evaluate the following :
`lim_(x -> 1) [(sqrt(x) - 1)/logx]`
`lim_{n→∞}[1/(n^2 + 1) + 2/(n^2 + 1) + 3/(n^2 + 1) + .... + n/(n^2 + 1)]` = ______