मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following : limx→1[1-x2sinπx] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 1) [(1 - x^2)/(sinpix)]`

बेरीज

उत्तर

`lim_(x -> 1) (1 - x^2)/(sinpix) = (1 - x  1 + x)/(sinpix)`

Put 1 – x = h,

∴  x = 1 – h

As x → 1, h → 0

∴ `lim_(x -> 1) (1 - x  1 + x)/(sinpix)`

= `lim_("h" -> 0) (("h")(1 + 1 - "h"))/(sin pi (1 - "h"))`

= `lim_("h" -> 0) (("h")(2 - "h"))/(sin (pi - pi"h"))`

= `lim_("h" -> 0) (("h")(2 - "h"))/(sin pi"h")`  ...[∵ sin (π – θ) = sin θ]

= `lim_("h" -> 0) ((2 - "h"))/(((sin pi"h")/(pi"h"))*pi)` 

= `1/pi * (lim_("h" -> 0) (2 - "h"))/(lim_("h" -> 0) ((sin pi"h")/(pi"h"))`

= `1/pi* ((2 - 0))/1  ...[because  "h" -> 0","  pi"h" -> 0  "and" lim_(theta -> 0) (sintheta)/theta = 1]`

= `2/pi`

shaalaa.com
Substitution Method
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.5 [पृष्ठ १५०]

APPEARS IN

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×