हिंदी

Evaluate the following : limx→1[22x-2-2x+1sin2(x-1)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> 1) [(2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))]`

योग

उत्तर

Put x = 1 + h.

Then x – 1 = h

and as x → 1, h → 0

∴ `lim_(x -> 1) (2^(2x - 2) - 2^x + 1)/(sin^2 (x - 1))`

= `lim_(x -> 1) (2^(2(x - 1)) - 2^x + 1)/(sin^2 (x - 1))`

= `lim_("h" -> 0) (2^(2"h") - 2^(1 + "h") + 1)/(sin^2"h")`

= `lim_("h" -> 0) (2^(2"h") - 2*2^"h" + 1)/(sin^2"h")`

= `lim_("h" -> 0) (2^"h" - 1)^2/(sin^2"h")`

= `lim_("h" -> 0) ((2^"h" - 1)/"h")^2/((sin"h")/"h")^2`   ...[∵ h → 0 ∴ h ≠ 0]

= `(lim_("h" -> 0) (2^"h" - 1)/"h")^2/(lim_("h" -> 0) sin"h"/"h")^2`

= `(log 2)^2/(1)^2    ...[∵ lim_(x -> 0) ("a"^x - 1)/x = log "a"]`

= (log 2)2

shaalaa.com
Substitution Method
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Limits
Miscellaneous Exercise 7.2 | Q II. (18) | पृष्ठ १५९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×