Advertisements
Advertisements
Question
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Solution
`lim_(x -> 0) (x(6^x - 3^x))/(cos (6x) - cos (4x))`
= `lim_(x -> 0) (x*3^x (2^x - 1))/(-2sin ((6x + 4x)/2) sin((6x - 4x)/2))`
= `1/(-2) lim_(x -> 0) (x*3^x (2^x - 1))/(sin 5x*sinx)`
= `1/(-2) lim_(x -> 0) ((x*3^x (2^x - 1))/x^2)/((sin 5x* sinx)/x^2) ...[("Divide Numerator and"),("Denominator by" x^2),(∵ x -> 0"," ∴ x ≠ 0 ∴ x^2 ≠ 0)]`
= `1/(-2) (lim_(x -> 0) [3^x ((2^x - 1))/x])/(lim_(x -> 0) ((sin5x)/x * sinx/x))`
= `1/(-2) (lim_(x -> 0)(3x) * lim_(x -> 0) ((2^x - 1)/x))/(lim_(x -> 0) (sinx/(5x) xx 5) * lim_(x -> 0) (sinx/x))`
= `1/(-2) xx (3^circ xx log 2)/(1 xx 5 xx 1) ...[(because x -> 0"," 5x -> 0),(lim_(x -> 0) ("a"^x - 1)/x = log "a"),(lim_(x -> 0) sinx/x = 1)]`
= `(-1)/10 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`(ax + b)/(cx + d)`
`x^(2/3)`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.