English

Evaluate: limx→1x7-2x5+1x3-3x2+2 - Mathematics

Advertisements
Advertisements

Question

Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`

Sum

Solution

Given that `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`   .....`[0/0  "form"]`

= `lim_(x -> 1) (x^7 - x^5 - x^5 + 1)/(x^3 - x^2 - 2x^2 + 2)`

= `lim_(x -> 1) (x^5(x^2 - 1) - 1(x^5 - 1))/(x^2(x - 1) - 2(x^2 - 1))`

Dividing the numerator and denominator by (x – 1) we get

= `lim_(x -> 1) (x^5 ((x^2 - 1)/(x - 1)) - 1((x^5 - 1)/(x - 1)))/(x^2((x - 1)/(x - 1)) - 2((x^2 - 1)/(x - 1))`

= `(lim_(x -> 1) x^5 (x + 1) - lim_(x -> 1) ((x^5 - (1)^5)/(x - 1)))/(lim_(x -> 1) x^2 - 2 lim_(x -> 1) (x + 1))`

= `(1(2) - 5 * (1)^(5 - 1))/(1 - 2(2))`

= `(2 - 5)/(1 - 4)`

= `(-3)/(--3)`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 240]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 10 | Page 240

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Find the derivative of f(x) = `sqrt(sinx)`, by first principle.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`


Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


cos (x2 + 1)


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×