Advertisements
Advertisements
Question
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Solution
Given that `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)` .....`[0/0 "form"]`
= `lim_(x -> 1) (x^7 - x^5 - x^5 + 1)/(x^3 - x^2 - 2x^2 + 2)`
= `lim_(x -> 1) (x^5(x^2 - 1) - 1(x^5 - 1))/(x^2(x - 1) - 2(x^2 - 1))`
Dividing the numerator and denominator by (x – 1) we get
= `lim_(x -> 1) (x^5 ((x^2 - 1)/(x - 1)) - 1((x^5 - 1)/(x - 1)))/(x^2((x - 1)/(x - 1)) - 2((x^2 - 1)/(x - 1))`
= `(lim_(x -> 1) x^5 (x + 1) - lim_(x -> 1) ((x^5 - (1)^5)/(x - 1)))/(lim_(x -> 1) x^2 - 2 lim_(x -> 1) (x + 1))`
= `(1(2) - 5 * (1)^(5 - 1))/(1 - 2(2))`
= `(2 - 5)/(1 - 4)`
= `(-3)/(--3)`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> 1) (x^4 - sqrt(x))/(sqrt(x) - 1)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
cos (x2 + 1)
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.