English

Evaluate: limx→01-cosmx1-cosnx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`

Sum

Solution

Given that `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`

= `lim_(x -> 0)  ((2 sin^2  m/2 x)/(2 sin^2  n/2 x))`

= `lim_(x -> 0) ((sin  m/2 x)/(sin  n/2 x))`

= `(lim_(x -> 0) ((sin  m/2 x)/(m/2 x) xx m/2 x)^2)/(lim_(x -> 0)  ((sin  n/2 x)/(sin  n/2 x) xx n/2 x)^2)`

= `(1 * m^2/4 x^2)/(1 * n^2/4 x^2)`  ......`[because  lim_(x -> 0)  sinx/x = 1]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Exercise [Page 240]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Exercise | Q 19 | Page 240

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Evaluate the following limit.

`lim_(x -> 0) (ax +  xcos x)/(b sin x)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


cos (x2 + 1)


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______. 


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×