Advertisements
Advertisements
Question
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Solution
Given that `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
= `lim_(x -> 0) (2 sin x - 2 sin x cos x)/x^3`
= `lim_(x -> 0) (2 sin x(1 - cosx))/x^3`
= `lim_(x -> 0) (2sinx)x (( - cosx)/x)`
= `lim_(x -> ) ((sinx)/x)((sin^2 x/2)/x^2)`
= `lim_(x -> 0) 2((sinx)/x)(2 (sin^2 x/2)/(x^2/4) xx 1/4)`
= `lim_(x -> 0) 2((sin x)/x) 2[((sin x/2)/(x/2))^2] * 1/4`
= `lim_(x -> 0) 4/4 ((sin x)x)`
= `lim_(x/2 -> 0) ((sin x/2)/(x/2))^2`
= `1 * 1 * (1)^2`
= 1 .....`[because lim_(x -> 0) sinx/x = 1]`
APPEARS IN
RELATED QUESTIONS
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
x cos x
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.