हिंदी

Evaluate: limx→02sinx-sin2xx3 - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`

योग

उत्तर

Given that `lim_(x -> 0) (2 sin x - sin 2x)/x^3`

= `lim_(x -> 0) (2 sin x - 2 sin x cos x)/x^3`

= `lim_(x -> 0) (2 sin x(1 - cosx))/x^3`

= `lim_(x -> 0) (2sinx)x (( - cosx)/x)`

= `lim_(x -> ) ((sinx)/x)((sin^2 x/2)/x^2)`

= `lim_(x -> 0) 2((sinx)/x)(2 (sin^2  x/2)/(x^2/4) xx 1/4)`

= `lim_(x -> 0) 2((sin x)/x) 2[((sin  x/2)/(x/2))^2] * 1/4`

= `lim_(x -> 0) 4/4 ((sin x)x)`

= `lim_(x/2 -> 0) ((sin x/2)/(x/2))^2`

= `1 * 1 * (1)^2`

= 1   .....`[because  lim_(x -> 0)  sinx/x = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 18 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`x^(2/3)`


x cos x


`lim_(x -> pi) sinx/(x - pi)` is equal to ______.


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×