Advertisements
Advertisements
प्रश्न
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
विकल्प
1
0
– 1
None of these
उत्तर
If `f(x) = {{:((sin[x])/([x])",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to none of these.
Explanation:
Given, `f(x) = {{:((sin[x])/([x])",", [x] ≠ 0),(0",", [x] = 0):}`
L.H.L = `lim_(x -> 0) (sin[x])/([x])`
= `lim_(h -> 0) (sin[0 - h])/([0 - h])`
= `lim_(h -> 0) (-sin[-h])/([-h])` = – 1
R.H.L = `lim_(x -> 0^+) (sin[x])/([x])`
= `lim_(h -> 0) (sin[0 + h])/([ 0 + h])`
= `lim_(h -> 0) (sin[h])/([h])` = 1
L.H.L ≠ R.H.L
So, the limit does not exist.
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
`lim_(x -> 3^+) x/([x])` = ______.
Let Sk = `sum_(r = 1)^k tan^-1(6^r/(2^(2r + 1) + 3^(2r + 1)))`. Then `lim_(k→∞)` Sk = is equal to ______.
`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.