हिंदी

Evaluate: limx→01-cosmx1-cosnx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`

योग

उत्तर

Given that `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`

= `lim_(x -> 0)  ((2 sin^2  m/2 x)/(2 sin^2  n/2 x))`

= `lim_(x -> 0) ((sin  m/2 x)/(sin  n/2 x))`

= `(lim_(x -> 0) ((sin  m/2 x)/(m/2 x) xx m/2 x)^2)/(lim_(x -> 0)  ((sin  n/2 x)/(sin  n/2 x) xx n/2 x)^2)`

= `(1 * m^2/4 x^2)/(1 * n^2/4 x^2)`  ......`[because  lim_(x -> 0)  sinx/x = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 19 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


cos (x2 + 1)


`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`


Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


`lim_(x -> 3^+) x/([x])` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×