हिंदी

Limx→0(sin(α+β)x+sin(α-β)x+sin2αx)cos2βx-cos2αx⋅x - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`

योग

उत्तर

Given, `lim_(x -> 0) ([sin (alpha + beta)x + sin(alpha - beta)x + sin 2alpha * x])/(cos 2betax - cos 2alphax) * x`

= `lim_(x -> 0) ([2 sin alpha x * cos betax + sin 2alpha * x]*x)/(2sin (alpha + beta)x * sin(alpha - beta)x)`   ......`[(because sin C + sin D = 2 sin  (C + D)/2 * cos  (C - D)/2),(cos C - cos D = - 2 sin  (C + D)/2 * sin  (C - D)/2)]`

= `lim_(x -> 0) ([2 sin alphax * cos betax + 2 sin alphax * cos alphax] * x)/(2 sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (2 sin alphax (cos betax + cos alphax)*x)/(2 sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (sin alphax[2 cos((alpha + beta)/2)x * cos((alpha - beta)/2)x]*x)/(sin(alpha + beta)x * sin(alpha - beta)x)`

= `lim_(x -> 0) (sin alphax [2 cos ((alpha + beta)/2)x * cos((alpha - beta)/2)x]*x)/(2 sin((alpha + beta)/2)x * cos((alpha + beta)/2)x) * 2 sin ((alpha - beta)/2)x * cos((alpha - beta)/2)x`   .......`[(because  cos C + cos D = 2 cos  (C + d)/2 cos  (C - D)/2),("and"  sin 2x = 2 sin x cos x)]`

= `lim_(x -> 0) (sin alphax * x)/(2sin((alpha + beta)/2)x sin((alpha - beta)/2) * x)`

= `lim_(x -> 0) 1/2 ((sin alphax)/(alphax) * (alphax) * x)/([(sin ((alpha + beta)/2) x)/(((alpha + beta)/2) * x) xx ((alpha + beta)/2) * x][(sin((alpha - beta)/2)*x)/(((alpha - beta)/2)* x) xx ((alpha - beta))/2 * x])`

= `1/2 * (alphax^2)/(((alpha + beta)/2)x * ((alpha - beta)/2)x)`

= `1/2[alpha/(((alpha + beta)/2)((alpha - beta)/2))]`

= `1/2 * (4alpha)/(alpha^2 - beta^2)`

= `(2alpha)/(alpha^2 - beta^2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 48 | पृष्ठ २४१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate the following :

`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.


Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`


`lim_(x -> 0) |x|/x` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> 1/2) (4x^2 - 1)/(2x  - 1)`


Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`


Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`


Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`


`(ax + b)/(cx + d)`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) (tan 2x - x)/(3x - sin x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


`lim_(x -> 3^+) x/([x])` = ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×