हिंदी

Limx→0x2cosx1-cosx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.

विकल्प

  • 2

  • `3/2`

  • `(-3)/2`

  • 1

MCQ
रिक्त स्थान भरें

उत्तर

`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is 2.

Explanation:

Given `lim_(x -> 0) (x^2 cosx)/(1 - cosx)`

= `lim_(x -> 0) (x^2 cosx)/(2sin^2  x/2)`   .....`[because 1 - cos x = 2 sin^2  x/2]`

= `lim_(x -> 0) (x^2/4 xx 4 cos x)/(2 sin^2  x/2)`

= `lim_(x -> 0 => x/2 -> 0) ((x/2)^2 * 2 cos x)/(sin^2  x/2)`

= `lim_(x/2 -> 0) ((x/2)/(sin  x/2))^2 * 2 cos x`

= 2 cos 0

= `2 xx 1`

= 2  ......`[because  lim_(x -> 0) x/sinx = 1]`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 55 | पृष्ठ २४२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`


Evaluate the following limit.

`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


Evaluate `lim_(x -> 0)  (sin(2 + x) - sin(2 - x))/x`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`


`(ax + b)/(cx + d)`


`x^(2/3)`


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×