Advertisements
Advertisements
प्रश्न
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.
विकल्प
2
0
1
–1
उत्तर
`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is 1.
Explanation:
Given `lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x))`
= `lim_(x -> 0) (sinx [sqrt(x + 1) + sqrt(1 - x)])/((sqrt(x + 1) - sqrt(1 - x))(sqrt(x + 1) + sqrt(1 - x))`
= `lim_(x -> 0) (sin x[sqrt(x + 1) + sqrt(1 - x)])/(x + 1 - 1 + x)`
= `lim_(x -> 0) (sin x[sqrt(x + 1) + sqrt(1 - x)])/(2x)`
= `1/2 * lim_(x -> 0) sinx/x [sqrt(x + 1) + sqrt(1 - x)]`
Taking limit, we get
= `1/2 xx 1 xx [sqrt(0 + 1) + sqrt(1 - 0)]`
= `1/2 xx 1 xx 2`
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> pi/2) (secx - tanx)`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/3) (sqrt(1 - cos 6x))/(sqrt(2)(pi/3 - x))`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
`(ax + b)/(cx + d)`
`x^(2/3)`
x cos x
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`