Advertisements
Advertisements
प्रश्न
Evaluate `lim_(x -> pi/2) (secx - tanx)`
उत्तर
Put `y = pi/2 - x`.
Then y → 0 as x → `pi/2`.
Thereofre `lim_(x -> pi/2) (secx - tanx)`
= `lim_(y -> 0) [sec(pi/2 - y) - tan(pi/2 - y)]`
= `lim_(y -> 0) 1/siny = cosy/siny`
= `lim_(y -> 0) (1 - cosy)/siny`
= `lim_(y -> 0) (2sin^2 y/2)/(2sin y/2 cos y/2)`
Since, `sin^2 y/2 = (1 - cosy)/2`
sin y = `2sin y/2 cos y/2`
= `lim_(y/2 _> 0) tan y/2` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit :
`lim_(x -> 0) [(x*tanx)/(1 - cosx)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following :
`lim_(x -> pi/4) [(sinx - cosx)^2/(sqrt(2) - sinx - cosx)]`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
Evaluate: `lim_(x -> 0) (sqrt(1 + x^3) - sqrt(1 - x^3))/x^2`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
cos (x2 + 1)
x cos x
`lim_(y -> 0) ((x + y) sec(x + y) - x sec x)/y`
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
Show that `lim_(x -> 4) |x - 4|/(x - 4)` does not exists
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.