हिंदी

Evaluate: limx→02-1+cosxsin2x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`

योग

उत्तर

Given that `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`

= `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x) xx (sqrt(2) + sqrt(1 + cosx))/(sqrt(2) + sqrt(1 + cos x))`

= `lim_(x -> 0) (2 - (1 + cos x))/(sin^2x [sqrt(2) + sqrt(1 + cos x)])`

= `lim_(x -> 0) (1 - cos x)/(sin^2 xx [sqrt(2) + sqrt(1 + cos x)])`

= `lim_(x -> 0) (2 sin^2  x/2)/((2 sin  x/2 cos  x/2)^2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`

= `lim_(x -> 0) (2 sin^2  x/2)/(4 sin^2  x/2 cos^2  x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`

= `lim_(x -> 0) 2/(4 cos^2  x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`

Taking limit, we get

= `2/(4 cos^2 0) xx 1/((sqrt(2) + sqrt(2))`

= `1/2 xx 1/(2sqrt(2))`

= `1/(4sqrt(2))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise [पृष्ठ २४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise | Q 26 | पृष्ठ २४०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Evaluate the following limit.

`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`


Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x → 0) x sec x`


Evaluate the following limit.

`lim_(x -> 0) (cosec x -  cot x)`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x ->0)((secx - 1)/x^2)`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0)[(secx^2 - 1)/x^4]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______ 


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


`x^(2/3)`


x cos x


`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.


If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×