Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
उत्तर
Given that `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
= `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x) xx (sqrt(2) + sqrt(1 + cosx))/(sqrt(2) + sqrt(1 + cos x))`
= `lim_(x -> 0) (2 - (1 + cos x))/(sin^2x [sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (1 - cos x)/(sin^2 xx [sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (2 sin^2 x/2)/((2 sin x/2 cos x/2)^2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) (2 sin^2 x/2)/(4 sin^2 x/2 cos^2 x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
= `lim_(x -> 0) 2/(4 cos^2 x/2) xx 1/([sqrt(2) + sqrt(1 + cos x)])`
Taking limit, we get
= `2/(4 cos^2 0) xx 1/((sqrt(2) + sqrt(2))`
= `1/2 xx 1/(2sqrt(2))`
= `1/(4sqrt(2))`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit :
`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`
Evaluate the following limit :
`lim_(x ->0)((secx - 1)/x^2)`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
`lim_{x→0}((3^x - 3^xcosx + cosx - 1)/(x^3))` is equal to ______
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
`x^(2/3)`
x cos x
`lim_(x -> 0) ((1 + x)^n - 1)/x` is equal to ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) ("cosec" x - cot x)/x` is equal to ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
If `f(x) = {{:(sin[x]/[x]",", [x] ≠ 0),(0",", [x] = 0):}`, where [.] denotes the greatest integer function, then `lim_(x -> 0) f(x)` is equal to ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.