Advertisements
Advertisements
प्रश्न
x cos x
उत्तर
Let `y = x cos x` ......(i)
`y + Δy = (x + Δx) cos(x + Δx)` ......(ii)
Subtracting eq. (i) from equation (ii) we get
`y + Δy - y = (x + Δx) cos(x + Δx) - x cos x`
⇒ `Δy = x cos (x + Δx) + Δx cos (x + Δx) - x cos x`
Dividing both sides by Δx and take the limits,
`lim_(Δx -> 0) (Δy)/(Δx) = lim_(Δx -> 0) (x cos (x + Δx) - x cos x + Δx cos (x + Δx))/(Δx)`
`(dy)/(dx) = lim_(Δx -> 0) (x[cos(x + Δx) - cos x])/(Δx) + lim_(Δx -> 0) (Δx cos(x + Δx))/(Δx)` ......`["By defination" lim_(Δx -> 0) (Δy)/(Δx) = (dy)/(dx)]`
= `lim_(Δx -> 0) (x[-2 sin ((x + Δx + x))/2 * sin ((x + Δx - x))/2])/(Δx) + lim_(Δx -> 0) cos(x + Δx)`
= `lim_((Δx -> 0),(because (Δx)/2 -> 0)) (x[-2 sin(x + (Δx)/2) * sin (Δx)/2])/(2 xx (Δx)/2) + lim_(Δx - > 0) cos(x + Δx)`
∴ `(Δx)/2 -> 0` Taking the limits, we have
= `x[- sin x] + cos x` .......`[because lim_((Δx)/2 -> 0) (sin (Δx)/2)/((Δx)/2) = 1]`
= `- x sin x + cos x`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (sqrt(2 + x) - sqrt(2))/x`
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Find the derivative of f(x) = `sqrt(sinx)`, by first principle.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> sqrt(2)) (x^4 - 4)/(x^2 + 3sqrt(2x) - 8)`
Evaluate: `lim_(x -> 1) (x^7 - 2x^5 + 1)/(x^3 - 3x^2 + 2)`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
Evaluate: `lim_(x -> 0) (sqrt(2) - sqrt(1 + cos x))/(sin^2x)`
`lim_(x -> pi/4) (tan^3x - tan x)/(cos(x + pi/4))`
`lim_(x -> 0) |sinx|/x` is ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin x^2/4 log(1 + 3x))`, is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.