Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
उत्तर
Given that `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
= `lim_(x -> 3) ((x^3 + (3)^3)/(x - 3))/((x^5 + (3)^5)/(x - 3))` ......[Dividing the Nr and Den. by x – 3]
= `(lim_(x -> 3) ((x^3 - (-3)^3)/(x + 3)))/(lim_(x -> 3) ((x^5 - (-3)^2)/(x + 3))` ......`[lim_(x -> a) (f(x))/(g(x)) = (lim_(x -> a) f(x))/(lim_(x -> a) g(x))]`
= `(3(-3)^(3-1))/(5(-3)^(5 - 1))`
= `(3 xx (-3)^2)/(5 xx (-3)^4)`
= `1/(5 xx 3)`
= `1/15`
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x -> 0) (ax + xcos x)/(b sin x)`
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit.
`lim_(x -> 0) (cosec x - cot x)`
Evaluate the following limit.
`lim_(x -> (pi)/2) (tan 2x)/(x - pi/2)`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =
Evaluate the following :
`lim_(x -> "a") [(sinx - sin"a")/(x - "a")]`
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
Find the positive integer n so that `lim_(x -> 3) (x^n - 3^n)/(x - 3)` = 108.
`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 0) |sinx|/x` is ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.
`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.