मराठी

X cos x - Mathematics

Advertisements
Advertisements

प्रश्न

x cos x

बेरीज

उत्तर

Let `y = x cos x`  ......(i)

`y + Δy = (x + Δx) cos(x + Δx)`  ......(ii)

Subtracting eq. (i) from equation (ii) we get

`y + Δy - y = (x + Δx) cos(x + Δx) - x cos x`

⇒ `Δy = x cos (x + Δx) + Δx cos (x + Δx) - x cos x`

Dividing both sides by Δx and take the limits,

`lim_(Δx -> 0) (Δy)/(Δx) = lim_(Δx -> 0) (x cos (x + Δx) - x cos x + Δx cos (x + Δx))/(Δx)`

`(dy)/(dx) = lim_(Δx -> 0) (x[cos(x + Δx) - cos x])/(Δx) + lim_(Δx -> 0) (Δx cos(x + Δx))/(Δx)`   ......`["By defination"  lim_(Δx -> 0) (Δy)/(Δx) = (dy)/(dx)]`

= `lim_(Δx -> 0) (x[-2 sin  ((x + Δx + x))/2 * sin  ((x + Δx - x))/2])/(Δx) + lim_(Δx -> 0) cos(x + Δx)`

= `lim_((Δx -> 0),(because  (Δx)/2 -> 0)) (x[-2 sin(x + (Δx)/2) * sin (Δx)/2])/(2 xx (Δx)/2) + lim_(Δx - > 0) cos(x + Δx)`

∴ `(Δx)/2 -> 0` Taking the limits, we have

= `x[- sin x] + cos x`   .......`[because  lim_((Δx)/2 -> 0) (sin  (Δx)/2)/((Δx)/2) = 1]`

= `- x sin x + cos x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 46 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit :

`lim_(theta -> 0) [(1 - cos2theta)/theta^2]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Select the correct answer from the given alternatives.

`lim_(x → π/3) ((tan^2x - 3)/(sec^3x - 8))` =


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> pi/2) (secx - tanx)`


Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.


`lim_(x -> 1) [x - 1]`, where [.] is greatest integer function, is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`


Evaluate: `lim_(x -> 0) (1 - cos mx)/(1 - cos nx)`


Evaluate: `lim_(x -> 0) (sin 2x + 3x)/(2x + tan 3x)`


Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec"  x - 2)`


cos (x2 + 1)


`lim_(x -> 0) sinx/(sqrt(x + 1) - sqrt(1 - x)` is ______.


`lim_(x -> pi/4) (sec^2x - 2)/(tan x - 1)` is equal to ______.


If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.


If `lim_(n→∞)sum_(k = 2)^ncos^-1(1 + sqrt((k - 1)(k + 2)(k + 1)k)/(k(k + 1))) = π/λ`, then the value of λ is ______.


The value of `lim_(x rightarrow 0) (4^x - 1)^3/(sin  x^2/4 log(1 + 3x))`, is ______.


`lim_(x rightarrow ∞) sum_(x = 1)^20 cos^(2n) (x - 10)` is equal to ______.


`lim_(x rightarrow π/2) ([1 - tan (x/2)] (1 - sin x))/([1 + tan (x/2)] (π - 2x)^3` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×