Advertisements
Advertisements
प्रश्न
Evaluate: `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
उत्तर
Given that `lim_(x -> pi/6) (cot^2 x - 3)/("cosec" x - 2)`
= `lim_(x -> pi/6) ("cosec"^2 x - 1 - 3)/("cosec" x - 2)`
= `lim_(x -> pi/6) ("cosec"^2x - 4)/("cosec" x - 2)`
= `lim_(x -> pi/6) (("cosec" x + 2)("cosec" x - 2))/(("cosec" x - 2))`
= `lim_(x -> pi/6) ("cosec" x + 2)`
Taking limit we have
= `"cosec" pi/6 + 2`
= 2 + 2
= 4
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x → 0) x sec x`
Evaluate the following limit.
`lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Evaluate the following :
`lim_(x -> 0)[(secx^2 - 1)/x^4]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 0) (sin(2 + x) - sin(2 - x))/x`
Evaluate `lim_(x -> pi/6) (2sin^2x + sin x - 1)/(2sin^2 x - 3sin x + 1)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> a) (sqrt(a + 2x) - sqrt(3x))/(sqrt(3a + x) - 2sqrt(x))`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> pi/2) (1 - sin x)/cosx` is equal to ______.
Evaluate: `lim_(x -> 3) (x^2 - 9)/(x - 3)`
Evaluate: `lim_(x -> a) ((2 + x)^(5/2) - (a + 2)^(5/2))/(x - a)`
Evaluate: `lim_(x -> 0) (sin 3x)/(sin 7x)`
Evaluate: `lim_(x -> 0) (sin^2 2x)/(sin^2 4x)`
Evaluate: `lim_(x -> 0) (2 sin x - sin 2x)/x^3`
Evaluate: `lim_(x -> pi/6) (sqrt(3) sin x - cos x)/(x - pi/6)`
`(ax + b)/(cx + d)`
x cos x
`lim_(x -> 0) ((sin(alpha + beta) x + sin(alpha - beta)x + sin 2alpha x))/(cos 2betax - cos 2alphax) * x`
`lim_(x -> pi) sinx/(x - pi)` is equal to ______.
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 1) (x^m - 1)/(x^n - 1)` is ______.
If `f(x) = {{:(x^2 - 1",", 0 < x < 2),(2x + 3",", 2 ≤ x < 3):}`, the quadratic equation whose roots are `lim_(x -> 2^-) f(x)` and `lim_(x -> 2^+) f(x)` is ______.
If `f(x) = tanx/(x - pi)`, then `lim_(x -> pi) f(x)` = ______.
If `lim_(x→∞) 1/(x + 1) tan((πx + 1)/(2x + 2)) = a/(π - b)(a, b ∈ N)`; then the value of a + b is ______.