मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following limit : limx→0[cos(ax)-cos(bx)cos(cx)-1] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following limit :

limx0[cos(ax)-cos(bx)cos(cx)-1]

बेरीज

उत्तर

limx0cos(ax)-cos(bx)cos(cx)-1

= limx0-cos(ax)+cos(bx)1-cos(cx)

= limx01-cosax-1+cosbx1-coscx

= limx0(1-cosax)-(1-cosbx)1-coscx

= limx02sin2 (ax2)-2sin2 bx22sin2 cx2

= limx0sin2(ax2)-sin2 (bx2)x2sin2(cx2)x2  ...[Divide numerator and denominator by x2x0,x0x20]

= limx0[sin2(ax2)x2-sin2(bx2)x2]limx0sin2 (cx2)x2

= limx0[sin ax2x]2-limx0[sin bx2x]2limx0[sin cx2x]2

= limx0[sin ax2ax2]2(a2)2-limx0[sin bx2bx2]2(b2)2limx0[sin cx2cx2]2(c2)2

= (1)2a24-(1)2b24(1)2c24

= a24-b24c24

= a2-b2c2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Exercise 7.4 [पृष्ठ १४८]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following limit.

limxπsin(π-x)π(π-x)


Evaluate the following limit.

limx0cosxπ-x


Evaluate the following limit.

limxπ2tan2xx-π2


Evaluate the following limit :

limθ0[sin(mθ)tan(nθ)]


Evaluate the following limit :

limθ0[1-cos2θθ2]


Evaluate the following limit :

limx0(secx-1x2)


Select the correct answer from the given alternatives.

limx0(5sinx-xcosx2tanx-3x2) =


Evaluate the following :

limx0[x(6x-3x)cos(6x)-cos(4x)]


Evaluate the following :

limxa[xcosa-acosxx-a]


Evaluate the following :

limxπ4[(sinx-cosx)22-sinx-cosx]


Evaluate limx21x-2-2(2x-3)x3-3x2+2x


Evaluate limx0 sin(2+x)-sin(2-x)x


Evaluate limxπ62sin2x+sinx-12sin2x-3sinx+1


Find the derivative of f(x) = sinx, by first principle.


limx0|x|x is equal to ______.


limx1[x-1], where [.] is greatest integer function, is equal to ______.


Evaluate: limx124x2-12x -1


Evaluate: limx1x4-xx-1


Evaluate: limx1x7-2x5+1x3-3x2+2


Evaluate: limx01+x3-1-x3x2


Evaluate: limx128x-32x-1-4x2+14x2-1


Evaluate: limx0sin3xsin7x


Evaluate: limx0sin22xsin24x


Evaluate: limx02sinx-sin2xx3


Evaluate: limxπ4 sinx-cosxx-π4


Evaluate: limxπ63sinx-cosxx-π6


Evaluate: limx0sin2x+3x2x+tan3x


Evaluate: limx02-1+cosxsin2x


x cos x


Show that limx4|x-4|x-4 does not exists


limxπsinxx-π is equal to ______.


limx1xm-1xn-1 is ______.


If f(x)=tanxx-π, then limxπf(x) = ______.


If limx1x+1tan(πx+12x+2)=aπ-b(a,bN); then the value of a + b is ______.


If limnk=2ncos-1(1+(k-1)(k+2)(k+1)kk(k+1))=πλ, then the value of λ is ______.


The value of limx0(4x-1)3sin x24log(1+3x), is ______.


limxx=120cos2n(x-10) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.