मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Evaluate the following : limx→a[xcosa-acosxx-a] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following :

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`

बेरीज

उत्तर

`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`

= `lim_(x -> "a") [(x cos "a" - "a" cos "a" + "a" cos "a" - "a" cos x)/(x - "a")]`   ...[Note this step]

= `lim_(x -> "a") [((x - "a") cos "a" + "a"(cos"a" - cosx))/(x - "a")]`

= `lim_(x -> "a") [((x - "a") cos "a" + 2"a" sin (("a" + x)/2)((x - "a")/2))/(x - "a")]`

= `lim_(x -> "a") [((x - "a")cos"a")/(x - "a") + (2"a" sin (("a" + x)/2) sin((x - "a")/2))/(x - "a")]`

= `lim_(x -> "a") [cos"a" + "a" sin (("a" + x)/2)* (sin((x - "a")/2))/(((x - "a")/2))]`  ...[∵ x → a, x ≠ a, ∴ x – a ≠ 0]

= `lim_(x -> "a") cos"a" + "a"[lim_(x -> "a") sin(("a" + x)/2)] xx [lim_(x -> "a") sin((x - "a")/2)/((x - "a")/2)]` 

= `cos "a" + "a" sin (("a" + "a")/2) xx 1     ...[(because x -> "a" ","  x ≠ "a"  therefore (x - "a")/2 -> 0),(and lim_(theta -> 0) sintheta/theta = 1)]`

= cos a + a sin a

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Limits - Miscellaneous Exercise 7.2 [पृष्ठ १५९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Limits
Miscellaneous Exercise 7.2 | Q II. (16) | पृष्ठ १५९

संबंधित प्रश्‍न

Evaluate the following limit.

`lim_(x ->0) cos x/(pi - x)`


Evaluate the following limit.

`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`


Evaluate the following limit :

`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`


Evaluate the following limit :

`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`


Evaluate the following limit :

`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`


Evaluate the following limit :

`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`


Evaluate the following limit :

`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`


Evaluate the following limit :

`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`


Select the correct answer from the given alternatives.

`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =


Select the correct answer from the given alternatives.

`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =


Evaluate the following :

`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`


`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______ 


Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`


Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`


Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`


`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.


`lim_(x -> 0) |x|/x` is equal to ______.


If f(x) = x sinx, then f" `pi/2` is equal to ______.


Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`


Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`


Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`


Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`


Evaluate: `lim_(x -> pi/4)  (sin x - cosx)/(x - pi/4)`


Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`


Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`


`x^(2/3)`


x cos x


`lim_(x -> pi) (1 - sin  x/2)/(cos  x/2 (cos  x/4 - sin  x/4))`


`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.


`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.


`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.


`lim_(x -> 0) |sinx|/x` is ______.


`lim_(x -> 0) (sin mx cot  x/sqrt(3))` = 2, then m = ______. 


The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.


If L = `lim_(x→∞)(x^2sin  1/x - x)/(1 - |x|)`, then value of L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×