Advertisements
Advertisements
प्रश्न
Evaluate the following :
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
उत्तर
`lim_(x -> "a") [(x cos "a" - "a" cos x)/(x - "a")]`
= `lim_(x -> "a") [(x cos "a" - "a" cos "a" + "a" cos "a" - "a" cos x)/(x - "a")]` ...[Note this step]
= `lim_(x -> "a") [((x - "a") cos "a" + "a"(cos"a" - cosx))/(x - "a")]`
= `lim_(x -> "a") [((x - "a") cos "a" + 2"a" sin (("a" + x)/2)((x - "a")/2))/(x - "a")]`
= `lim_(x -> "a") [((x - "a")cos"a")/(x - "a") + (2"a" sin (("a" + x)/2) sin((x - "a")/2))/(x - "a")]`
= `lim_(x -> "a") [cos"a" + "a" sin (("a" + x)/2)* (sin((x - "a")/2))/(((x - "a")/2))]` ...[∵ x → a, x ≠ a, ∴ x – a ≠ 0]
= `lim_(x -> "a") cos"a" + "a"[lim_(x -> "a") sin(("a" + x)/2)] xx [lim_(x -> "a") sin((x - "a")/2)/((x - "a")/2)]`
= `cos "a" + "a" sin (("a" + "a")/2) xx 1 ...[(because x -> "a" "," x ≠ "a" therefore (x - "a")/2 -> 0),(and lim_(theta -> 0) sintheta/theta = 1)]`
= cos a + a sin a
APPEARS IN
संबंधित प्रश्न
Evaluate the following limit.
`lim_(x ->0) cos x/(pi - x)`
Evaluate the following limit.
`lim_(x -> 0) (cos 2x -1)/(cos x - 1)`
Evaluate the following limit :
`lim_(theta -> 0) [(sin("m"theta))/(tan("n"theta))]`
Evaluate the following limit :
`lim_(x -> 0)[(1 - cos("n"x))/(1 - cos("m"x))]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2 - "cosec"x)/(cot^2x - 3)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(cosx - sinx)/(cos2x)]`
Evaluate the following limit :
`lim_(x -> 0) [(cos("a"x) - cos("b"x))/(cos("c"x) - 1)]`
Evaluate the following limit :
`lim_(x -> pi) [(sqrt(1 - cosx) - sqrt(2))/(sin^2 x)]`
Evaluate the following limit :
`lim_(x -> pi/4) [(tan^2x - cot^2x)/(secx - "cosec"x)]`
Evaluate the following limit :
`lim_(x -> pi/6) [(2sin^2x + sinx - 1)/(2sin^2x - 3sinx + 1)]`
Select the correct answer from the given alternatives.
`lim_(x -> 0) ((5sinx - xcosx)/(2tanx - 3x^2))` =
Select the correct answer from the given alternatives.
`lim_(x -> pi/2) [(3cos x + cos 3x)/(2x - pi)^3]` =
Evaluate the following :
`lim_(x -> 0) [(x(6^x - 3^x))/(cos (6x) - cos (4x))]`
`lim_{x→-5} (sin^-1(x + 5))/(x^2 + 5x)` is equal to ______
Evaluate `lim_(x -> 2) 1/(x - 2) - (2(2x - 3))/(x^3 - 3x^2 + 2x)`
Evaluate `lim_(x -> 0) (tanx - sinx)/(sin^3x)`
Evaluate `lim_(x -> 0) (cos ax - cos bx)/(cos cx - 1)`
`lim_(x -> 0) sinx/(x(1 + cos x))` is equal to ______.
`lim_(x -> 0) |x|/x` is equal to ______.
If f(x) = x sinx, then f" `pi/2` is equal to ______.
Evaluate: `lim_(x -> 0) ((x + 2)^(1/3) - 2^(1/3))/x`
Evaluate: `lim_(x -> 3) (x^3 + 27)/(x^5 + 243)`
Evaluate: `lim_(x -> 1/2) (8x - 3)/(2x - 1) - (4x^2 + 1)/(4x^2 - 1)`
Evaluate: `lim_(x -> 0) (1 - cos 2x)/x^2`
Evaluate: `lim_(x -> pi/4) (sin x - cosx)/(x - pi/4)`
Evaluate: `lim_(x -> a) (sin x - sin a)/(sqrt(x) - sqrt(a))`
Evaluate: `lim_(x -> 0) (sin x - 2 sin 3x + sin 5x)/x`
`x^(2/3)`
x cos x
`lim_(x -> pi) (1 - sin x/2)/(cos x/2 (cos x/4 - sin x/4))`
`lim_(x -> 0) (x^2 cosx)/(1 - cosx)` is ______.
`lim_(x -> 0) (1 - cos 4theta)/(1 - cos 6theta)` is ______.
`lim_(x -> 1) ((sqrt(x) - 1)(2x - 3))/(2x^2 + x - 3)` is ______.
`lim_(x -> 0) |sinx|/x` is ______.
`lim_(x -> 0) (sin mx cot x/sqrt(3))` = 2, then m = ______.
The value of `lim_(x → ∞) ((x^2 - 1)sin^2(πx))/(x^4 - 2x^3 + 2x - 1)` is equal to ______.
If L = `lim_(x→∞)(x^2sin 1/x - x)/(1 - |x|)`, then value of L is ______.